From a leading researcher in optical spectroscopy and electronic properties of novel semiconductors comes this much-needed toolbox title to understand the concepts behind the spectroscopy of advanced organic materials and how they work. The book thus provides basic and practical knowledge on material photophysics for planning, carrying out and understanding experiments in spectroscopy. It contains a collection of simple practical rules for data analysis and interpretation, together with a list of experimental techniques, including the latest methods. Each topic is complemented by examples taken from forefront research on nanomaterials, photovoltaics and photonics, and each chapter includes a discussion, examples, topical boxes, tables and figures. The whole is rounded off by a bibliography for further reading, major references and appendixes containing theoretical derivation and numerical code. The result is a quick guide for the spectroscopist who needs to grasp the concept of the experiments.
This exciting new book details all aspects of a major class of pyrolants and elucidates the progress that has been made in the field, covering both the chemistry and applications of these coompounds. Written by a pre-eminent authority on the subject from the NATO Munitions Safety Information Analysis Center (MSIAC), it begins with a historical overview of the development of these materials, followed by a thorough discussion of their ignition, combustion and radiative properties. The next section explores the multiple facets of their military and civilian applications, as well as industrial synthetic techniques. The critical importance of the associated hazards, namely sensitivity, stability and aging, are discussed in detail, and the book is rounded off by an examination of the future of this vital and expanding field. The result is a complete guide to the chemistry, manufacture, applications and required safety precautions of pyrolants for both the military and chemical industries. From the preface: «… This book fills a void in the collection of pyrotechnic literature… it will make an excellent reference book that all researchers of pyrolants and energetics must have…» Dr. Bernard E. Douda, Dr. Sara Pliskin, NAVSEA Crane, IN, USA
By way of its clear and logical structure, as well as abundant highresolution illustrations, this is a systematic survey of the players and pathways that control genome function in the mammalian cell nucleus. As such, this handbook and reference ties together recently gained knowledge from a variety of scientific disciplines and approaches, dissecting all major genomic events: transcription, replication, repair, recombination and chromosome segregation. A special emphasis is put on transcriptional control, including genome-wide interactions and non-coding RNAs, chromatin structure, epigenetics and nuclear organization. With its focus on fundamental mechanisms and the associated biomolecules, this will remain essential reading for years to come.
In this introductory treatment Ali Nayfeh presents different concepts from dynamical systems theory and nonlinear dynamics in a rigorous yet plan way. He systematically introduces models and techniques and states the relevant ranges of validity and applicability. The reader is provided with a clear operational framework for consciously use rather than focused on the underlying mathematical apparatus. The exposition is largely by means of examples, dealt with up to their final outcome. For most of the examples, the results obtained with the method of normal forms are equivalent to those obtained with other perturbation methods, such as the method of multiple scales and the method of averaging. The previous edition had a remarkable success by researchers from all over the world working in the area of nonlinear dynamics and their applications in engineering. Additions to this new edition concern major topics of current interest. In particular, the author added three new chapters dedicated to Maps, Bifurcations of Continuous Systems, and Retarded Systems. In particular the latter has become of major importance in several applications, both in mechanics and in different areas. Accessible to engineers and applied scientist involved with nonlinear dynamics and their applications in a wide variety of fields. It is assumed that readers have a knowledge of basic calculus as well as the elementary properties of ordinary-differential equations.
Plasma physics has matured rapidly as a discipline, and now touches on many different research areas, including manufacturing processes. This collection of fundamental formulae and definitions in plasma physics is vital to anyone with an interest in plasmas or ionized gases, whether in physics, astronomy or engineering. Both theorists and experimentalists will find this book useful, as it incorporates the latest results and findings. The text treats astrophysical plasmas, fusion plasmas, industrial plasmas and low temperature plasmas as aspects of the same discipline – a unique approach made possible by the abbreviated nature of a formulary.
Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book – an inspiring source of information and insight for students, teachers and researchers alike.
Speckle metrology includes various optical techniques that are based on the speckle fields generated by reflection from a rough surface or by transmission through a rough diffuser. These techniques have proven to be very useful in testing different materials in a non-destructive way. They have changed dramatically during the last years due to the development of modern optical components, with faster and more powerful digital computers, and novel data processing approaches. This most up-to-date overview of the topic describes new techniques developed in the field of speckle metrology over the last decade, as well as applications to experimental mechanics, material science, optical testing, and fringe analysis.
This is the last of five books in the Amino Acids, Peptides and Proteins in Organic Synthesis series. Closing a gap in the literature, this is the only series to cover this important topic in organic and biochemistry. Drawing upon the combined expertise of the international «who's who» in amino acid research, these volumes represent a real benchmark for amino acid chemistry, providing a comprehensive discussion of the occurrence, uses and applications of amino acids and, by extension, their polymeric forms, peptides and proteins. The practical value of each volume is heightened by the inclusion of experimental procedures. The 5 volumes cover the following topics: Volume 1: Origins and Synthesis of Amino Acids Volume 2: Modified Amino Acids, Organocatalysis and Enzymes Volume 3: Building Blocks, Catalysis and Coupling Chemistry Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis Volume 5: Analysis and Function of Amino Acids and Peptides Volume 5 of this series presents a wealth of methods to analyze amino acids and peptides. Classical approaches are described, such as X-ray analysis, chromatographic methods, NMR, AFM, mass spectrometry and 2D-gel electrophoresis, as well as newer approaches, including Surface Plasmon Resonance and array technologies. Originally planned as a six volume series, Amino Acids, Peptides and Proteins in Organic Chemistry now completes with five volumes but remains comprehensive in both scope and coverage. Further information about the 5 Volume Set and purchasing details can be viewed here.
This is the fourth of five books in the Amino Acids, Peptides and Proteins in Organic Synthesis series. Closing a gap in the literature, this is the only series to cover this important topic in organic and biochemistry. Drawing upon the combined expertise of the international «who's who» in amino acid research, these volumes represent a real benchmark for amino acid chemistry, providing a comprehensive discussion of the occurrence, uses and applications of amino acids and, by extension, their polymeric forms, peptides and proteins. The practical value of each volume is heightened by the inclusion of experimental procedures. The 5 volumes cover the following topics: Volume 1: Origins and Synthesis of Amino Acids Volume 2: Modified Amino Acids, Organocatalysis and Enzymes Volume 3: Building Blocks, Catalysis and Coupling Chemistry Volume 4: Protection Reactions, Medicinal Chemistry, Combinatorial Synthesis Volume 5: Analysis and Function of Amino Acids and Peptides The fourth volume in this series is structured in three main sections. The first section is about protection reactions and amino acid based peptidomimetics. The second, and most extensive, part is devoted to the medicinal chemistry of amino acids. It includes, among others, the chemistry of alpha- and beta amino acids, peptide drugs, and advances in N- and O-glycopeptide synthesis. The final part deals with amino acids in combinatorial synthesis. Methods, such as phage display, library peptide synthesis, and computational design are described. Originally planned as a six volume series, Amino Acids, Peptides and Proteins in Organic Chemistry now completes with five volumes but remains comprehensive in both scope and coverage. Further information about the 5 Volume Set and purchasing details can be viewed here.
Written in a style that breaks the barriers between the disciplines, this monograph enables researchers from life science, physics, engineering, or chemistry to access the most recent results in a common language. The resulting review character of this project sets it apart from specialized journals, and allows each volume to respond quickly to new developments. This third volume contains new topics ranging from chaotic computing, via random dice tossing and stochastic limit-cycle oscillators, to a number theoretic example of self-organized criticality, wave localization in complex networks and anomalous diffusion. A first-class board of international scientists advises the editor, such that the carefully selected and invited contributions represent the latest and most relevant findings.