Oliver Brand

Список книг автора Oliver Brand


    Inkjet-based Micromanufacturing

    Oliver Brand

    Inkjet-based Micromanufacturing Inkjet technology goes way beyond putting ink on paper: it enables simpler, faster and more reliable manufacturing processes in the fields of micro- and nanotechnology. Modern inkjet heads are per se precision instruments that deposit droplets of fluids on a variety of surfaces in programmable, repeating patterns, allowing, after suitable modifications and adaptations, the manufacturing of devices such as thin-film transistors, polymer-based displays and photovoltaic elements. Moreover, inkjet technology facilitates the large-scale production of flexible RFID transponders needed, eg, for automated logistics and miniaturized sensors for applications in health surveillance. The book gives an introduction to inkjet-based micromanufacturing, followed by an overview of the underlying theories and models, which provides the basis for a full understanding and a successful usage of inkjet-based methods in current microsystems research and development Overview of Inkjet-based Micromanufacturing: Thermal Inkjet Theory and Modeling Post-Printing Processes for Inorganic Inks for Plastic Electronics Applications Inkjet Ink Formulations Inkjet Fabrication of Printed Circuit Boards Antennas for Radio Frequency Identification Tags Inkjet Printing for MEMS

    System-level Modeling of MEMS

    Oliver Brand

    System-level modeling of MEMS – microelectromechanical systems – comprises integrated approaches to simulate, understand, and optimize the performance of sensors, actuators, and microsystems, taking into account the intricacies of the interplay between mechanical and electrical properties, circuitry, packaging, and design considerations. Thereby, system-level modeling overcomes the limitations inherent to methods that focus only on one of these aspects and do not incorporate their mutual dependencies. The book addresses the two most important approaches of system-level modeling, namely physics-based modeling with lumped elements and mathematical modeling employing model order reduction methods, with an emphasis on combining single device models to entire systems. At a clearly understandable and sufficiently detailed level the readers are made familiar with the physical and mathematical underpinnings of MEMS modeling. This enables them to choose the adequate methods for the respective application needs. This work is an invaluable resource for all materials scientists, electrical engineers, scientists working in the semiconductor and/or sensor industry, physicists, and physical chemists.

    Resonant MEMS. Fundamentals, Implementation, and Application

    Oliver Brand

    Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems.

    Micro Process Engineering. Fundamentals, Devices, Fabrication, and Applications

    Oliver Brand

    Advanced Micro & Nanosystems (AMN) provides cutting-edge reviews and detailed case studies by top authors from science and industry, covering technologies, devices and advanced systems from the micro and nano worlds, which together have an immense innovative application potential that opens up with control of shape and function from the atomic level right up to the visible world without any technological gaps. In this topical volume, authors from leading industrial players and research institutions present a concise and didactical introduction to Micro Process Engineering, the combination of microtechnology and process engineering into a most promising and powerful tool for revolutionizing chemical processes and industrial mass production of bulk materials, fine chemicals, pharmaceuticals and many other products. The book takes the readers from the fundamentals of engineering methods, transport processes, and fluid dynamics to device conception, simulation and modelling, control interfaces and issues of modularity and compatibility. Fabrication strategies and techniques are examined next, focused on the fabrication of suitable microcomponents from various materials such as metals, polymers, silicon, ceramics and glass. The book concludes with actual applications and operational aspects of micro process systems, giving broad coverage to industrial efforts in America, Europe and Asia as well as laboratory equipment and education.