Multiplexed networks are essential for the unified, efficient and cost-effective exchange of electronic information within embedded component systems. This is especially important in automotive manufacturing as vehicles become increasingly reliant on robust electronic networks and systems for improved reliability, anti-lock brake systems (ABS), steering, on-board navigation systems, and much more. The latest systems such as X-by-Wire and FlexRay aim to produce faster, fault-tolerant network component interconnects, for state-of-the-art network implementation and safer, more reliable engineering of vehicular systems. This book provides a thorough and comprehensive introduction to automotive multiplexed network buses, covering the technical principles, components, implementation issues and applications. Key features: Presents a thorough coverage of the controller area network (CAN) protocol, including information on physical layers, conformity problems, hardware and software tools, and application layers. Gives a detailed description of the new local interconnect network (LIN) bus, setting out its developments, properties, problems and ways to overcome these. Examines the existing and emerging network buses such as time-triggered CAN (TTCAN), FlexRay and X-by-Wire. Explores the possibilities for linking the various buses that are discussed, explaining how the Fail-Safe-System basis chip (SBC) and other gateways are designed and constructed. Analyses wired and wireless internal and external serial links, including Safe-by-Wire plus, I2C, Media Oriented Systems Transport (MOST), remote keyless entry, tyre pressure monitoring systems (TPMS) and Bluetooth. A valuable guide to embedded systems for a range of applications, Multiplexed Networks for Embedded Systems: CAN, LIN, FlexRay, Safe-by-Wire…is essential reading for electronics engineers and researchers developing electronics for the automotive industry. It is also useful for practising aerospace engineers and other practitioners interested in the application of network technologies, and advanced students taking courses on automotive and embedded system design.
In the past, very little practical information or training has been available for engineers, technicians and students in the area of radio frequency identification (RFID) systems at ultra high frequencies (UHF) and super high frequencies (SHF). Here, Dominique Paret offers you a complete guide to the theory, components, practical application areas and standards in RFID at UHF and SHF. He achieves an expert balance between theory and technology, finance and other aspects, providing a clear view of the entire field. This book deals with the real aspects of contactless applications in detail, and divided into five parts, covers: Basic principles, general considerations and the market, defining all essential terms and the different tags and applications. Wave propagation principles and theory. Communication and transmission, baseband signals, carrier modulation and interactions, discussing communication modes between the base station and tag, and energy transfer modes. International safety standards and regulations, including International Organization for Standardization (ISO) and Open Systems Interconnection (OSI) models, and methods for evaluating commercial tags. Components for tags and base stations. This comprehensive reference is ideal for computer and electronics engineers working on the design and development of RFID systems for the electronics industry, as well as for those in other industries such as automotive, security and transport, who want to implement RFID into their business. Dominique Paret’s book is also a solid and thorough technical introduction to the subject for graduate level students and researchers in electronics and industrial engineering design.
This book is built to start from elementary and fundamental bases to the first degrees of harmony. It provides many theoretical and technical bases of music, presenting in detail relations between physics and music (harmonics, frequency and time spectrum, dissonance, etc.), physiological relations with human body and education.
In this book, the authors focus on the concrete aspects of IoT (Internet of Things): the daily operation, on the ground, of this domain, including concrete and detailed discussion of the designs, applications and realizations of Secure Connected Things and IoT. As experts in the development of RFID and IoT technologies, the authors offer the reader a highly technical discussion of these topics, including the many approaches (technical, security, safety, ergonomic, economic, normative, regulations, etc.) involved in Secure Connected Objects projects. This book is written both for readers wishing to familiarize themselves with the complex issues surrounding networking objects and for those who design these connective «things».
Near field communication (NFC) can appear to be a simple intuitive technology for exchanging data between close devices. In reality, these contactless structures that combine components and antennas must respect important and specific working constraints. Illustrated by a number of detailed technological examples, this book discusses the multiple normative (ISO, CEN, NFC Forum, EMVCo, etc.) and regulatory (ERC, FCC, ETSI, radiofrequency, private and ecological pollution, etc.) constraints, as well as the applied, typological, functional, structural, environmental or interoperability constraints that a NFC device might face. Design Constraints for NFC Devices also presents techniques that enable us to free ourselves from the technological constraints of current NFC operations encountered in banking, public transport, administration, automotive, industrial, communicating object and Internet of Things applications.
Near-field communication (NFC) enables the exchange of information between close devices. The antenna is the indispensable element to transform an electronic device into an NFC system. For both theory and practice, this book presents in detail the design technologies of different antennas. They must meet the NFC ISO 18 092 and 21 481 standards as well as specifications by the NFC Forum for industrial applications, by EMVCo for banking applications and payments, and by CEN for public transport. In a particularly pedagogic way, Antenna Designs for NFC Devices enables designers of communicating object systems and the Internet of Things (IoT) to have access to the mysteries of the design of NFC antennas.
An authoritative yet highly accessible guide to the design and operation of the FlexRay bus, the latest protocol for automotive network communications A translation of the French edition, originally published in January 2011, this work is the result of numerous training courses that Dominique Paret has given in companies, and it provides detailed explanations of the design and operation of the FlexRay bus. Comprised of five parts the book covers: the FlexRay concept and its communication protocol; the FlexRay physical layer; synchronization and global time and; architecture of a node, components and development aid tools for hardware and software. Provides comprehensive treatment of the FlexRay network, including its implementation through a real automotive application Includes the latest specifications (Version 3) concluded by the FlexRay consortium widely expected to become the industry standard Written by an author with in-depth experience of automotive electronics, including FlexRay, and presenter of specialist training courses to the industry Includes a review of industrial tools to help design and implement a FlexRay based distributor application
An authoritative yet highly accessible guide to the design and operation of the FlexRay bus, the latest protocol for automotive network communications A translation of the French edition, originally published in January 2011, this work is the result of numerous training courses that Dominique Paret has given in companies, and it provides detailed explanations of the design and operation of the FlexRay bus. Comprised of five parts the book covers: the FlexRay concept and its communication protocol; the FlexRay physical layer; synchronization and global time and; architecture of a node, components and development aid tools for hardware and software. Provides comprehensive treatment of the FlexRay network, including its implementation through a real automotive application Includes the latest specifications (Version 3) concluded by the FlexRay consortium widely expected to become the industry standard Written by an author with in-depth experience of automotive electronics, including FlexRay, and presenter of specialist training courses to the industry Includes a review of industrial tools to help design and implement a FlexRay based distributor application