Издание содержит основные теоретические сведения из следующих разделов анализа функций нескольких переменных: безусловные и условные экстремумы, дифференцирование неявных функций, введение в теорию гладких поверхностей. По каждой теме приведены необходимые теоремы с доказательствами и разобраны примеры решения задач. В конце каждой главы даны задания для самопроверки. Для студентов первого курса, обучающихся на факультете «Фундаментальные науки» МГТУ им. Н. Э. Баумана по всем специальностям. Может быть использовано студентами других факультетов.
Прекрасным весенним утром птенец зяблик выпадает из гнезда и находит убежище от голодных хищников в норке у мышат. Удастся ли новоиспеченным друзьям вернуть горемыку домой, если он даже летать то не научился, при чем лес не самое безопасное место, особенно для малышей.
Решена одна давняя проблема замыкаемости форм Дирихле. Получены условия слабой сходимости конечномерных распределений сингулярных диффузионных процессов в терминах порожденных ими форм Дирихле. Доказана плотность емкостей, порожденных классами Соболева различных порядков в локально выпуклых пространствах, а также в пространствах конфигураций. В этих пространствах построены и изучены поверхностные меры на множествах уровня соболевских функций. В работе применяются методы теории бесконечномерных вероятностных распределений и функционального анализа; используется ряд оригинальных конструкций автора. Работа носит теоретический характер. Ее методы и результаты могут быть использованы в теории случайных процессов, теории дифференциальных уравнений с частными производными на бесконечномерных пространствах, математической физике, геометрической теории меры. Для студентов старших курсов, аспирантов и преподавателей высших учебных заведений с углубленным изучением математики.