James Larminie

Список книг автора James Larminie



    Electric Vehicle Technology Explained

    James Larminie

    While the classic battery electric car continues to make only a small impact on the automobile market, other types of electric vehicle, especially hybrids, have made significant and promising improvements. Moreover, small battery electric vehicles such as bicycles and mobility aids are also developing well. Presenting more than 160 diagrams and pictures, this book explains the science and technology behind these important developments, and also introduces the issues that underpin the design and performance modelling of electric vehicles. Electric Vehicle Technology Explained: Encompasses a full range of electric vehicles: bicycles, mobility aids, delivery vehicles and buses – not just cars. Covers all the basic technology relating to electric road vehicles – batteries, super capacitors, flywheels, fuel cells, electric motors and their controllers, and system design. Considers the environmental benefits and disadvantages of electric vehicles and their component devices. Includes case studies of a range of batteries, hybrids and fuel cell powered vehicles, from bicycles to buses. Offers many MATLAB® examples explaining the design of appropriate computer prediction models. Professionals, researchers and engineers in the electric vehicle industry as well as advanced students in electrical and mechanical engineering will benefit from this comprehensive coverage of electric vehicle technology.

    Electric Vehicle Technology Explained

    James Larminie

    Fully updated throughout, Electric Vehicle Technology, Second Edition, is a complete guide to the principles, design and applications of electric vehicle technology. Including all the latest advances, it presents clear and comprehensive coverage of the major aspects of electric vehicle development and offers an engineering-based evaluation of electric motor scooters, cars, buses and trains. This new edition includes: important new chapters on types of electric vehicles, including pickup and linear motors, overall efficiencies and energy consumption, and power generation, particularly for zero carbon emissions expanded chapters updating the latest types of EV, types of batteries, battery technology and other rechargeable devices, fuel cells, hydrogen supply, controllers, EV modeling, ancillary system design, and EV and the environment brand new practical examples and case studies illustrating how electric vehicles can be used to substantially reduce carbon emissions and cut down reliance on fossil fuels futuristic concept models, electric and high-speed trains and developments in magnetic levitation and linear motors an examination of EV efficiencies, energy consumption and sustainable power generation. MATLAB® examples can be found on the companion website www.wiley.com/go/electricvehicle2e Explaining the underpinning science and technology, this book is essential for practicing electrical, automotive, power, control and instrumentation engineers working in EV research and development. It is also a valuable reference for academics and students in automotive, mechanical, power and electrical engineering.