Encyclopedia of Glass Science, Technology, History, and Culture. Группа авторов

Читать онлайн.
Название Encyclopedia of Glass Science, Technology, History, and Culture
Автор произведения Группа авторов
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 0
isbn 9781118799499



Скачать книгу

R. (1989). Silica diagenesis: origin of inorganic and replacement cherts. Earth Sci. Rev. 26: 253–284.

      21 Bots, P., Benning, L.G., Rodriguez‐Blanco, J.‐D. et al. (2012). Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst. Growth Design 12: 3806–3814.

      22 Marron, A.O., Ratcliffe, S., Wheeler, G.L. et al. (2016). The evolution of silicon transport in eukaryotes. Mol. Biol. Evol. 33: 3226–3248.

      23 Gibbs, G.V., Meagher, E.P., Newton, M.D., and Swanson, D.K. (1981). A comparison of experimental and theoretical bond length and angle variations for minerals and inorganic solids, and molecules. In: Structure and Bonding in Crystals (eds. M. O'Keefe and A. Navrotsky), 195–225. New York: Academic Press.

      24 Richet, P. and Ottonello, G. (2014). The earth as a multiscale quantum‐mechanical system. C. R. Geosci. 346: 317–325.

      25 Zanotto, E.D. and Cassar, D.R. (2017). The microscopic origin of the extreme glass‐forming ability of albite and B2O3. Sci. Rep. 7: 43022. https://doi.org/10.1038/srep43022.

      26 Sipp, A., Neuville, D.R., and Richet, P. (1997). Viscosity, configurational entropy and relaxation kinetics of borosilicate melts. J. Non Cryst. Solids 211: 281–293.

      27 Mazurin, O.V., Startsev, Y.K., and Potselueva, L.N. (1979). Temperature dependences of the viscosity of some glasses at a constant structural temperature. Sov. J. Glass Phys. Chem. 5: 68–79.

      28 Sipp, A. and Richet, P. (2002). Equivalence of the kinetics of volume, enthalpy and viscosity relaxation in glass‐forming silicate liquids. J. Non Cryst. Solids 298: 202–212.

      29 Nikonov, A.M., Bogdanov, V.N., Nemilov, S.V. et al. (1982). Structural relaxation in binary alkalisilicate melts. Fyz. Khim. Stekla 8: 694–703.

      30 Vo‐Thanh, D., Bottinga, Y., Polian, A., and Richet, P. (2005). Sound velocity in alumino‐silicate liquids determined up to 2550 K from Brillouin spectroscopy: glass transitions and crossover temperatures. J. Non Cryst. Solids 351: 61–68.

      31 Webb, S. and Courtial, P. (1996). Compressibility of melts in the system CaO‐Al2O3‐SiO2. Geochim. Cosmochim. Acta 60: 75–86.

      32 Askarpour, V., Manghnani, M.H., and Richet, P. (1993). Elastic properties of diopside, anorthite and grossular glasses and liquids: a Brillouin scattering study up to 1400 K. J. Geophys. Res. B98: 17683–17689.

      33 Stevens, J.R., Coakley, R.W., Chau, K.W., and Hunt, J.L. (1986). The pressure variation of the glass transition temperature in atactic polystyrene. J. Chem. Phys. 84: 1006–1014.

      34 Thomas, S.B. and Parks, G.S. (1931). Studies on glass. VI. Some specific heat data on boron trioxide. J. Phys. Chem. 35: 2091–2102.

      35 Hutchinson, J.M. (2009). Determination of the glass transition temperature. Methods correlation and structural heterogeneity. J. Therm. Anal. Calorim. 98: 578–589.

      36 Adachi, K., Suga, H., and Seki, S. (1968). Phase changes in crystalline and glassy‐crystalline cyclohexanol. Bull. Chem. Soc. Jpn. 41: 1073–1087.

      37 Maxwell, J.C. (1868). On the dynamical theory of gases. Philos. Mag. 35: 129–145. and 185–217.

      38 Dingwell, D.B. and Webb, S.L. (1989). Structural relaxation in silicate melts and non‐Newtonian melt rheology in geologic processes. Phys. Chem. Minerals 16: 508–516.

      39 Mysen, B. and Richet, P. (2005). Silicate Glasses and Melts. Properties and Structure. Amsterdam: Elsevier.

      40 Toplis, M.J. and Richet, P. (2000). Equilibrium expansivity of silicate liquids in the glass transition range. Contrib. Mineral. Petrol. 139: 672–683.

      41 Richet, P., Robie, R.A., and Hemingway, B.S. (1986). Low‐temperature heat capacity of diopside glass (CaMgSi2O6): a calorimetric test of the configurational‐entropy theory applied to the viscosity of liquid silicates. Geochim. Cosmochim. Acta 50: 1521–1533.

      42 Angell, C.A. (1985). Strong and fragile liquids. In: Relaxation in Complex Systems (eds. K.L. Ngai and G.B. Wright), 3–11. Arlington, VA: Office Naval Research.

      43 Goldstein, M. (1969). Viscous liquids and the glass transition: a potential energy barrier picture. J. Chem. Phys. 51: 3728–3739.

      44 McKinney, J.E. and Goldstein, M. (1974). PVT relationships for liquid and glassy poly(vinyl acetate). J. Res. N.B.S. 78A: 331–353.

      45 Kauzmann, W. (1948). The nature of the glassy state and the behavior of liquids at low temperature. Chem. Rev. 43: 219–256.

      46 Chang, S.S. and Bestul, A.B. (1972). Heat capacity and thermodynamic properties of o‐terphenyl crystal, glass, and liquid. J. Chem. Phys. 56: 503–516.

      47 Chang, S.S. and Bestul, A.B. (1974). Heat capacities of selenium crystal (trigonal), glass, and liquid from 5 to 360 K. J. Chem. Therm. 6: 325–344.

      48 Gibbs, J.H. and Di Marzio, E. (1958). Nature of the glass transition and the glassy state. J. Chem. Phys. 28: 373–383.

      49 Adam, G. and Gibbs, J.H. (1965). On the temperature dependence of cooperative relaxation properties in glass‐forming liquids. J. Chem. Phys. 43: 139–146.

      50 Angell, C.A. (1997). Entropy and fragility in supercooling liquids. J. Res. NIST 102: 171–185.

      51 Laughlin, W.T. and Uhlmann, D.R. (1972). Viscous flow in simple organic liquids. J. Phys. Chem. 76: 2317–2325.

      52 Angell, C.A. and Sichina, W. (1976). Thermodynamics of the glass transition: empirical aspects. Ann. N. Y. Acad. Sci. 279: 53–67.

Coordinationa Ionic radiusb (Å) Field strengthb Electronegativityc
Anions
O2− 2, 6 1.35, 1.40 3.5
F1− 2, 6 1.29, 1.33 4.0
Cl1− 6 1.81 3.0
Cations Network formers d
Fe3+ 4, 6 0.49, 0.55 0.88, 0.82 1.8
Ga3+ 4, 6 0.47, 0.62 0.90, 0.77 1.6
Al3+ 4, 6 0.39, 0.54 0.98, 0.83 1.5
Te4+ 3, 4e