This compilation on the degradation of 1,100 commercially important chemical products is the first publication to make this knowledge publicly accessible in one book. The data and annotations have been painstakingly assembled over a 10-year period in a collaboration between academia and regulatory authorities. The work explains in detail the methods, including computational ones, for the environmental assessment of volatile and semi-volatile substances, and is rounded off with data tables of degradation rates. A key resource for manufacturers and regulators of such substances.
Here, the most important classes of toxic chemicals from personal care compounds are systematically covered, from cosmetics to plastics additives to pharmaceuticals. For each substance, data on toxicity and bioaccumulation in various ecosystems are given. This first comprehensive treatment of personal care environmental toxins is rounded off by a discussion of strategies in wastewater treatment to control and remove these substances.
Collating the knowledge from over 20,000 publications in chemistry, biology and nanotechnology, this handbook is the first to comprehensively present the state of the art in one ready reference. A team of international authors connects the various disciplines involved, covering cis-trans isomerization of double bonds and pseudo-double bonds, as well as other cis-trans isomerizations. For biochemists, organic chemists, physicochemists, photochemists, polymer and medicinal chemists.
This first handbook to focus solely on the application of N-heterocyclic carbenes in synthesis covers metathesis, organocatalysis, oxidation and asymmetric reactions, along with experimental procedures. Written by leading international experts this is a valuable and practical source for every organic chemist.
The authors of this guide are experts on the use of microwaves for drug synthesis as well as having much experience in teaching courses held under the auspices of the American Chemical Society and the IUPAC. In this handy source of information for any practicing synthetic chemist they focus on common reaction types in medicinal chemistry, including solid-phase and combinatorial methods. They consider the underlying theory, latest developments in microwave applications and include a variety of examples from recent literature, as well as less common applications that are equally relevant for organic and medicinal chemists. An indispensable reference for researchers with an affinity to modern methods.
The development of molecules that selectively bind to nucleic acids has provided many details about DNA and RNA recognition. The range of such substances, such as metal complexes, peptides, oligonucleotides and a wide array of synthetic organic compounds, is as manifold as the functions of nucleic acids. Nucleic acid recognition sequences are often found in the major or minor groove of a double strand, while other typical interactions include intercalation between base pairs or the formation of triple or quadruple helices. One example of a binding mode that has recently been proposed is end stacking on such complex structures as the telomere tetraplex. In this comprehensive book, internationally recognized experts describe in detail the important aspects of nucleic acid binding, and in so doing present impressive approaches to drug design. Since typical substances may be created naturally or synthetically, emphasis is placed on natural products, chemical synthesis, the use of combinatorial libraries, and structural characterization. The whole is rounded off by contributions on molecular modeling, as well as investigations into the way in which any given drug interacts with its nucleic acid recognition site.
Most syntheses in the chemical research laboratory fail and usually require several attempts before proceeding satisfactorily. Failed syntheses are not only discouraging and frustrating, but also cost a lot of time and money. Many failures may, however, be avoided by understanding the structure-reactivity relationship of organic compounds. This textbook highlights the competing processes and limitations of the most important reactions used in organic synthesis. By allowing chemists to quickly recognize potential problems this book will help to improve their efficiency and success-rate. A must for every graduate student but also for every chemist in industry and academia. Contents: 1 Organic Synthesis: General Remarks 2 Stereoelectronic Effects and Reactivity 3 The Stability of Organic Compounds 4 Aliphatic Nucleophilic Substitutions: Problematic Electrophiles 5 The Alkylation of Carbanions 6 The Alkylation of Heteroatoms 7 The Acylation of Heteroatoms 8 Palladium-Catalyzed C-C Bond Formation 9 Cyclizations 10 Monofunctionalization of Symmetric Difunctional Substrates
This first book to comprehensively cover this hot topic presents the information hitherto scattered throughout smaller reviews or single book chapters to provide an introduction to this rapidly expanding field. In ten chapters, the international team of expert authors treats asymmetric syntheses, new transformations, and organometallic reactions using homo- and hetero-bimetallic catalysts. Written for advanced researchers, this very timely publication is of significant benefit to organic and organometallic chemists in both academia and industry.
Rhodium has proven to be an extremely useful metal due to its ability to catalyze an array of synthetic transformations, with quite often-unique selectivity. Hydrogenation, C-H activation, allylic substitution, and numerous other reactions are catalyzed by this metal, which presumably accounts for the dramatic increase in the number of articles that have recently emerged on the topic. P. Andrew Evans, the editor of this much-needed book, has assembled an internationally renowned team to present the first comprehensive coverage of this important area. The book features contributions from leaders in the field of rhodium-catalyzed reactions, and thereby provides a detailed account of the most current developments, including: Rhodium-Catalyzed Asymmetric Hydrogenation (Zhang) Rhodium-Catalyzed Hydroborations and Related Reactions (Brown) Rhodium-Catalyzed Asymmetric Addition of Organometallic Reagents to Electron Deficient Olefins (Hayashi) Recent Advances in Rhodium(I)-Catalyzed Asymmetric Olefin Isomerization and Hydroacylation Reactions (Fu) Stereoselective Rhodium(I)-Catalyzed Hydroformylation and Silylformylation Reactions and Their Application to Organic Synthesis (Leighton) Carbon-Carbon Bond-Forming Reactions Starting from Rh-H or Rh-Si Species (Matsuda) Rhodium(I)-Catalyzed Cycloisomerization and Cyclotrimerization Reactions (Ojima) The Rhodium(I)-Catalyzed Alder-ene Reaction (Brummond) Rhodium-Catalyzed Nucleophilic Ring Cleaving Reactions of Allylic Ethers and Amines (Fagnou) Rhodium(I)-Catalyzed Allylic Substitution Reactions and their Applications to Target Directed Synthesis (Evans) Rhodium(I)-Catalyzed [2+2+1] and [4+1] Carbocyclization Reactions (Jeong) Rhodium(I)-Catalyzed [4+2] and [4+2+2] Carbocyclizations (Robinson) Rhodium(I)-Catalyzed [5+2], [6+2], and [5+2+1] Cycloadditions: New Reactions for Organic Synthesis (Wender) Rhodium(II)-Stabilized Carbenoids Containing both Donor and Acceptor Substituents (Davies) Chiral Dirhodium(II)Carboxamidates for Asymmetric Cyclopropanation and Carbon-Hydrogen Insertion Reactions (Doyle) Cyclopentane Construction by Rhodium(II)-Mediated Intramolecular C-H Insertion (Taber) Rhodium(II)-Catalyzed Oxidative Amination (DuBois) Rearrangement Processes of Oxonium and Ammonium Ylides Formed by Rhodium(II)-Catalyzed Carbene-Transfer (West) Rhodium(II)-Catalyzed 1,3-Dipolar Cycloaddition Reactions (Austin) «Modern Rhodium-Catalyzed Organic Reactions» is an essential reference text for researchers at all levels in the general area of organic chemistry. This book provides an invaluable overview of the most significant developments in this important area of research, and will no doubt be an essential text for researchers at academic institutions and professionals at pharmaceutical/agrochemical companies.
Almost all of the breakthroughs in understanding the atmosphere have been initiated by field observations, using a range of instrumental techniques. Developing or deploying instruments to make further observations demands a thorough understanding of the chemical and spectroscopic principles on which such measurements depend. Written as an authoritative guide to the techniques of instrumental measurement for the atmospheric scientist, research student or undergraduate, Analytical Techniques for Atmospheric Measurement focuses on the instruments used to make real time measurements of atmospheric gas and aerosol composition. Topics covered include how they work, their strengths and weaknesses for a particular task, the platforms on which they have been deployed and how they are calibrated. It explains the fundamental principles upon which the instrumental techniques are based (ie what property of a molecule can be exploited to enable its detection), what limits instrumental sensitivity and accuracy, and the information that can be gained from their use.