Applied Numerical Methods Using MATLAB. Won Y. Yang

Читать онлайн.
Название Applied Numerical Methods Using MATLAB
Автор произведения Won Y. Yang
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119626824



Скачать книгу

are

equation

      (1.2 13)equation

      (1.2 14)equation

      From this, we can see why the relative error is magnified to cause the ‘loss of significance’ in the case of subtraction when the two numbers X and Y are almost equal so that |XY| ≈ 0.

      The magnitudes of the absolute and relative errors in the multiplication/division are

equation

      (1.2 15)equation

      (1.2 16)equation

equation

      (1.2 17)equation

      (1.2 18)equation

      This implies that, in the worst‐case, the relative error in multiplication/division may be as large as the sum of the relative errors of the two numbers.

      First, to decrease the magnitude of round‐off errors and to lower the possibility of overflow/underflow errors, make the intermediate result as close to 1 (one) as possible in consecutive multiplication/division processes. According to this rule, when computing xy/z, we program the formula as

       (xy)/z when x and y in the multiplication are very different in magnitude,

       x(y/z) when y and z in the division are close in magnitude, and

       (x/z)y when x and z in the division are close in magnitude.

       %nm125_1.m x=36; y=1e16; for n=[-20 -19 19 20] fprintf('ŷ%2d/ê%2dx=%25.15e\n',n,n,ŷn/exp(n*x)); fprintf('(y/êx)̂%2d=%25.15e\n',n,(y/exp(x))̂n); end

      For instance, when computing yn/enx with x > 1 and y > 1, we would program it as (y/ex)n rather than as yn/enx, so that overflow/underflow can be avoided. You may verify this by running the above MATLAB script “nm125_1.m”.

      >nm125_1 ŷ-20/ê-20x= 0.000000000000000e+000 (y/êx)̂-20= 4.920700930263814e-008 ŷ-19/ê-19x= 1.141367814854768e-007 (y/êx)̂-19= 1.141367814854769e-007 ŷ19/ê19x= 8.761417546430845e+006 (y/êx)̂19= 8.761417546430843e+006 ŷ20/ê20x= NaN (y/êx)̂20= 2.032230802424294e+007

      Second, in order to prevent ‘loss of significance’, it is important to avoid a ‘bad subtraction’ (Section 1.2.2), i.e. a subtraction of a number from another number having almost equal value. Let us consider a simple problem of finding the roots of a second‐degree equation ax2 + bx + c = 0 by using the quadratic formula

      Let |4ac| ≪ b2. Then, depending on the sign of b, a ‘bad subtraction’ may be encountered when we try to find x1 or x2, which is a smaller one of the two roots. This implies that it is safe from the ‘loss of significance’ to compute the root having the larger absolute value first and then obtain the other root by using the relation (between the roots and the coefficients) x1x2 = c/a (see Problem 1.20(b)).

       %nm125_2.m: roundoff error test f1=@(x)(1-cos(x))/x/x; % Eq.(1.2.20-1) f2=@(x)sin(x)*sin(x)/x/x/(1+cos(x)); % Eq.(1.2.20-2) for k=0:1 x=k*pi; tmp= 1; for k1=1:8 tmp=tmp*0.1; x1= x+tmp; fprintf('At x=%10.8f, ', x1) fprintf('f1(x)=%18.12e; f2(x)=%18.12e', f1(x1),f2(x1)); end end

      (1.2 20)equation

      It is safe to use f1(x) for xπ since the term (1 + cos x) in f2(x) is a ‘bad subtraction’, while it is safe to use f2(x) for x ≈ 0 since the term (1 − cos x) in f1(x) is a ‘bad subtraction’. Let us run the above MATLAB script “nm125_2.m” to confirm this. Under is the running result. This implies that we might use some formulas to avoid a ‘bad subtraction’.

      >nm125_2 At x=0.10000000, f1(x)=4.995834721974e-01; f2(x)=4.995834721974e-01 At x=0.01000000, f1(x)=4.999958333474e-01; f2(x)=4.999958333472e-01 At x=0.00100000, f1(x)=4.999999583255e-01; f2(x)=4.999999583333e-01 At x=0.00010000, f1(x)=4.999999969613e-01; f2(x)=4.999999995833e-01 At x=0.00001000, f1(x)=5.000000413702e-01; f2(x)=4.999999999958e-01 At x=0.00000100, f1(x)=5.000444502912e-01; f2(x)=5.000000000000e-01 At x=0.00000010, f1(x)=4.996003610813e-01; f2(x)=5.000000000000e-01 At x=0.00000001, f1(x)=0.000000000000e+00; f2(x)=5.000000000000e-01 At x=3.24159265, f1(x)=1.898571371550e-01; f2(x)=1.898571371550e-01 At x=3.15159265, f1(x)=2.013534055392e-01; f2(x)=2.013534055391e-01 At x=3.14259265, f1(x)=2.025133720884e-01; f2(x)=2.025133720914e-01 At x=3.14169265, f1(x)=2.026294667803e-01; f2(x)=2.026294678432e-01 At x=3.14160265, f1(x)=2.026410772244e-01; f2(x)=2.026410604538e-01 At x=3.14159365, f1(x)=2.026422382785e-01; f2(x)=2.026242248740e-01 At x=3.14159275, f1(x)=2.026423543841e-01; f2(x)=2.028044503269e-01 At x=3.14159266, f1(x)=2.026423659946e-01; f2(x)= Inf

      It may be helpful for avoiding a ‘bad subtraction’ to use the Taylor series expansion [W-5] rather than using the exponential function directly for the computation of ex. For example, suppose we want to find

      We can use the Taylor series expansion up to just the fourth‐order of ex about x = 0:

equation

      (1.2 22)equation

      Noting that the true value of (1.2.21) is computed to be 1 by using the L'Hopital's rule [W-7], we run the MATLAB script “nm125_3.m” to find which one of the two formulas f3(x) and f4(x) is better for finding the value of the 1.2.21 at x = 0. Would you compare them based on the running result shown below? How can the approximate formula f4(x) outrun the true one f3(x) for the numerical purpose, though not usual? It is because the zero factors in the numerator/denominator of f3(x)